The non-canonical hydroxylase structure of YfcM reveals a metal ion-coordination motif required for EF-P hydroxylation

نویسندگان

  • Kan Kobayashi
  • Assaf Katz
  • Andrei Rajkovic
  • Ryohei Ishii
  • Owen E. Branson
  • Michael A. Freitas
  • Ryuichiro Ishitani
  • Michael Ibba
  • Osamu Nureki
چکیده

EF-P is a bacterial tRNA-mimic protein, which accelerates the ribosome-catalyzed polymerization of poly-prolines. In Escherichia coli, EF-P is post-translationally modified on a conserved lysine residue. The post-translational modification is performed in a two-step reaction involving the addition of a β-lysine moiety and the subsequent hydroxylation, catalyzed by PoxA and YfcM, respectively. The β-lysine moiety was previously shown to enhance the rate of poly-proline synthesis, but the role of the hydroxylation is poorly understood. We solved the crystal structure of YfcM and performed functional analyses to determine the hydroxylation mechanism. In addition, YfcM appears to be structurally distinct from any other hydroxylase structures reported so far. The structure of YfcM is similar to that of the ribonuclease YbeY, even though they do not share sequence homology. Furthermore, YfcM has a metal ion-coordinating motif, similar to YbeY. The metal ion-coordinating motif of YfcM resembles a 2-His-1-carboxylate motif, which coordinates an Fe(II) ion and forms the catalytic site of non-heme iron enzymes. Our findings showed that the metal ion-coordinating motif of YfcM plays an essential role in the hydroxylation of the β-lysylated lysine residue of EF-P. Taken together, our results suggested the potential catalytic mechanism of hydroxylation by YfcM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lys34 of translation elongation factor EF-P is hydroxylated by YfcM.

Lys34 of the conserved translation elongation factor P (EF-P) is post-translationally lysinylated by YjeK and YjeA--a modification that is critical for bacterial virulence. Here we show that the currently accepted Escherichia coli EF-P modification pathway is incomplete and lacks a final hydroxylation step mediated by YfcM, an enzyme distinct from deoxyhypusine hydroxylase that catalyzes the fi...

متن کامل

Crystallization and preliminary X-ray crystallographic analysis of YfcM: an important factor for EF-P hydroxylation

Elongation factor P (EF-P) plays an essential role in the translation of polyproline-containing proteins in bacteria. It becomes functional by the post-translational modification of its highly conserved lysine residue. It is first β-lysylated by PoxA and then hydroxylated by YfcM. In this work, the YfcM protein from Escherichia coli was overexpressed, purified and crystallized. The crystal of Y...

متن کامل

(R)-β-lysine-modified elongation factor P functions in translation elongation.

Post-translational modification of bacterial elongation factor P (EF-P) with (R)-β-lysine at a conserved lysine residue activates the protein in vivo and increases puromycin reactivity of the ribosome in vitro. The additional hydroxylation of EF-P at the same lysine residue by the YfcM protein has also recently been described. The roles of modified and unmodified EF-P during different steps in ...

متن کامل

Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs.

The 'EF-hand' Ca2+-binding motif plays an essential role in eukaryotic cellular signalling, and the proteins containing this motif constitute a large and functionally diverse family. The EF-hand is defined by its helix-loop-helix secondary structure as well as the ligands presented by the loop to bind the Ca2+ ion. The identity of these ligands is semi-conserved in the most common (the 'canonic...

متن کامل

Characterization of the 1st and 2nd EF-hands of NADPH oxidase 5 by fluorescence, isothermal titration calorimetry, and circular dichroism

BACKGROUND Superoxide generated by non-phagocytic NADPH oxidases (NOXs) is of growing importance for physiology and pathobiology. The calcium binding domain (CaBD) of NOX5 contains four EF-hands, each binding one calcium ion. To better understand the metal binding properties of the 1st and 2nd EF-hands, we characterized the N-terminal half of CaBD (NCaBD) and its calcium-binding knockout mutant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014